戦略的スマ農プロ「輸出拡大に直結する青果用かんしょの 出荷工程における腐敗低減技術の開発」の概要

農研機構 九州沖縄農業研究センター 暖地畑作物野菜研究領域 グループ長補佐

にしば よういち 西場 洋一

はじめに

日本産のかんしょ(サツマイモ)は高品質で食味に優れるため海外でも評価が高く、香港、台湾、東南アジアなどを中心に近年輸出が急激に増加している(図1)。また、政府目標の輸出重点品目にも設定されており、今後さらなる輸出拡大が期待される品目である。一方、かんしょの輸出においては、特に冬期における海上輸送中にかんしょの腐敗が多発しており、出荷段階では腐敗が認められないかんしょが輸出先国に到着した時に腐敗している事例が多く発生している。日本産かんしょの更なる輸出拡大を目指すには、輸送中の腐敗を低減し、輸出を安定化させる技術の確立が喫緊の課題である。

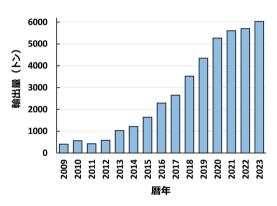
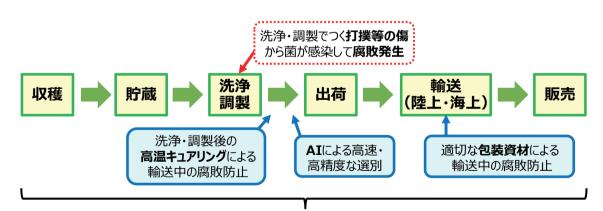



図1 日本産かんしょの輸出量推移 財務省貿易統計を基にグラフ作成

戦略的スマ農プロにおける取り組み

このため、農研機構では内部プロジェクトである九州沖縄経済圏スマートフードチェーンプロジェクト(2019~2023年度)において輸送中のかんしょ腐敗問題に取り組んできた。更に、2022年度からは戦略的

温湿度管理(温度13~14 ℃、湿度90~95 %) やかんしょの丁寧な取り扱いを徹底 図2 かんしょの出荷工程と腐敗防止方策の概要

スマ農プロ「輸出拡大に直結する青果用か んしょの出荷工程における腐敗低減技術の 開発 | (2022~2023年度、事業主体: 生研 支援センター) において「輸出かんしょ腐 敗低減コンソーシアム | (農研機構、宮崎

九州農水産物直販株式会社、株式会社やま もとファームみらい野、有限会社南橋商事) を結成し、輸出事業者やかんしょ生産法人、 大学、公設試とともに本問題の解決に向け 更に研究を発展させた。

かんしょ輸送中の腐敗は、表面についた

背黒

- 国産かんしょ(サツマイモ)は海外でも人気が高く、近年輸出が急増
- 一方、海上輸送中に腐敗が多発し、事業者の損失が問題となっている

- ✓ 主に冬季の海上輸送中に軟腐病や青かび病による。 腐敗が発生
- ✓ 腐敗率は平均約25%、推定損害額は約5.2億円 (全国、2020年度)

輸送中に腐敗したかんしょ

目的

かんしょ輸送中の腐敗を防止し、輸出を安定化させる技術体系を確立する

研究内容

■ 腐敗リスクの高いかんしょを予め除外できる傷検知AIの開発

- かんしょの画像データから腐敗の原因となる傷を 検知し、腐敗リスクを診断するAIを開発
- 腐敗リスクの高いかんしょを出荷前に予め除外し、 輸送中の腐敗を防止する技術の確立

農研機構 東京大学

■ 貯蔵・流通の各工程における腐敗防止技術の高度化

- 傷からの病原菌感染を防止する洗浄・調製後 高温キュアリングの最適条件解明
- 各工程における腐敗要因(環境条件、打撲の 影響等)の洗い出しと対策技術確立
- 包装資材等による損失低減技術開発 農研機構 宮城大学

■ 輸出実証試験

宮崎県総合農業試験場 • 傷検知AIと腐敗防止技術を組み合わせた技術体系を確立し、輸出実証試験により 腐敗防止効果を検証

九州農水産物直販 やまもとファームみらい野 南橋商事

図3 戦略的スマ農プロにおける課題概要

傷から菌が侵入して軟腐病や青かび病などの病害を発症することが大きな原因であると知られている。また、冬期の低温遭遇や不適切な包装資材の使用なども腐敗を助長すると考えられる。そのため、戦略的スマ農プロでは、かんしょ輸送中の腐敗を抑えるために以下のようなアプローチに基づいて研究を進めることとし、課題を構成した(図2、3)。

- ・かんしょに傷や打撲を与えないよう丁寧 な取り扱いを収穫時から販売に至るまで 徹底する。
- ・出荷工程における洗浄や調製で生じる避 けられない傷に対しては、病原菌の侵入 を防止する処理を行う。
- ・傷ついたかんしょなど、輸送中に腐敗するリスクの高いかんしょは出荷前の選別で予め除外する。
- ・低温遭遇を避ける、適切な包装資材を使用するなど、かんしょに適した環境を維持する。

このような方針に基づきコンソーシアム で連携して研究を推進した結果、輸出実証 試験におけるかんしょ輸送中腐敗率の大幅 な低減に成功するなど、かんしょ輸送中腐 敗の防止に寄与する成果をあげることがで きた。

「かんしょのさらなる輸出拡大に向けた腐 敗対策」シンポジウム

2024年3月、戦略的スマ農プロにおける研究成果をかんしょ生産法人、輸出事業者、普及機関などに周知するため「かんしょのさらなる輸出拡大に向けた腐敗対策」シンポジウムを熊本市にて開催した(図4)。本シンポジウムでは研究担当者による研究成果の紹介のほか、かんしょ傷検知AIのデモンストレーション、パネルディスカッション、「輸送中のかんしょに対する腐敗防止方策標準作業手順書」の紹介を行い、全国からご参加いただいた関係者の高い関心を集めた。

本特集では「かんしょのさらなる輸出拡大に向けた腐敗対策」シンポジウムの講演内容を中心に、戦略的スマ農プロにおける取り組みについて研究担当者よりご紹介する。本特集が日本産かんしょの輸出拡大のために役立つことができれば幸いである。

図4 「かんしょのさらなる輸出拡大に向けた腐敗対策」シンポジウム

2024年3月7日 熊本市国際交流会館にて開催 左:講演の様子 右:傷検知AIデモの様子

はじめに

- I. 輸送中のかんしょにおける腐敗問題の現状
- Ⅱ. 輸送中のかんしょにおける腐敗防止方策の概要と特徴
- Ⅲ. 傷をつけないイモの取扱い
- Ⅳ. 洗浄・調製後高温キュアリングについて
- V. 洗浄・調製後高温キュアリングの導入手順とポイント
- Ⅵ. 洗浄・調製後高温キュアリングの導入事例(実証試験)
- WI. 導入事例に対する評価
- Ⅷ. 技術の導入先
- IX. 輸送中の腐敗防止のためのその他の方策

用語解説

参考資料

図5 「輸送中のかんしょに対する腐敗防止方策標準作業手順書」の表紙と掲載項目(目次より)

なお、今回紹介する腐敗防止方策の一部は農研機構が発行する「輸送中のかんしょに対する腐敗防止方策標準作業手順書」(農研機構、2023)に取りまとめられ、2024年3月より提供を開始している(図5)。高温キュアリングの具体的条件や傷見本は標準作業手順書に掲載されており、下記URLまたは二次元コードから配布申し込みが可能である。

https://sop.naro.go.jp/document/detail/105

本特集で紹介された研究は、生研支援センター「戦略的スマート農業技術等の開発・改良(2022~2023年度)」(JPJ011397)の支援を受けて行われたものである。

参考資料

- 1) 財務省貿易統計 統計品別推移表 https://www.customs.go.jp/toukei/ srch/index.htm?M=77&P=1,1,,,2,,,, 2,,2009,2023,,2,071420000,,,,,,,1,,,,,,,,,,,,,(閲覧日:2024年7月1日)
- 2) 農研機構(2023) 輸送中のかんしょに 対する腐敗防止方策標準作業手順書 https://sop.naro.go.jp/document/ detail/105(閲覧日:2024年7月1日)