サツマイモ基腐病防除のための排水対策の 重要性と実施の際のポイント

農研機構 九州沖縄農業研究センター暖地畑作物 野菜研究領域 上級研究員

しま **島** たけお

はじめに

2018年から南九州(宮崎県、鹿児島県・沖縄県)において、サツマイモ基腐病(以下、基腐病)の発生により、サツマイモの株が立ち枯れ、塊根(イモ)が腐敗する症状が多発し、収量の減少が深刻な問題となった。基腐病は2020年以降にも新たに32都道府県でも発生が確認され、特に被害が深刻な南九州においては、基腐病の防除が緊急の課題となった。現在では防除対策が進み、被害も軽減しているが、予断を許さない状況にある。

基腐病の防除のためには、生産時期ごと に様々な対策を組み合わせて行う総合的な 防除が必要である^{1)、2)、3)}。防除対策は図1のように整理できる。収穫後に行う「1.土壌残渣リスクの低減」から「6.健全苗の育成」までは栽培期間外の防除対策、定植後に行う「7.農薬散布」から「9.適期の収穫」までは栽培期間の防除対策である。この中でも排水対策は重要な防除対策の一つである。本文では、まず、生研支援センター「イノベーション創出強化研究推進事業」(JPJ007097)の支援を受けた研究によって明らかになった排水対策の重要性を指摘する。また、圃場において排水対策を実施する際の留意点を示す。

■収穫後から定植まで(圃場での栽培期間外)

- 1. 土壌残渣リスクの低減 腐敗イモの除去,輪作,休 耕,被害の少ない圃場を選ぶ
- 2. 土壌消毒 発病圃場における薬剤, 湛 水処理病による消毒
- 3. 耐性土づくり 堆肥施用,緑肥栽培,微生 物資材施用における有機物の 投入,有用微生物群の生成
- 4. 排水対策 圃場勾配等の表面排水対策, 耕盤破砕等の地下排水対策
- 5. 抵抗性品種の導入 基腐病の発生のリスクが高 いことが予測される場合,抵 抗性品種を導入
- 6. 健全苗の育成 健全種イモの使用,適切な 苗床消毒,苗消毒

■定植後から収穫まで(圃場での栽培期間)

- 7. 農薬散布 アミスター, 銅剤を適切な 時期に散布する
- 8. 発病株の抜き取り 圃場で発病株を抜き取り, 二次感染を防ぐ
- 9. 適期の収穫 発病状況とサツマイモの生 育状況を見ながら、被害が拡 大する前に収穫する

図1 サツマイモ基腐病防除対策の整理

1. 基腐病の概要

基腐病は、Diaporthe destruens(ディアポルテ・デストルエンス)という糸状菌に感染することにより、苗床や圃場で発生する。基腐病に罹病すると株の地際のあたりが暗褐色〜黒色になる(図2A)。本病の病変部には柄子殻、または分生子殻とも呼ばれる微小な黒粒が多数形成される(図2B)。発病すると、地際の茎(株の基部)が黒変し、茎葉は黄色や赤色に変色し、次第にしおれ、地上部が枯死する。発病部には多数の胞子が形成され、雨水による湛水等で胞子が拡散し、被害が圃場全体に広がる場合もある(図2C)。

図2 サツマイモ基腐病の症状

A:暗褐色に変色した株の基部

B: 茎に形成された柄子殻

C:10月下旬に全体に被害が広がった圃場

2. 広域調査(宮崎県・鹿児島県全域)に より明らかになった排水対策の重要性

2018~2019年に、宮崎県および鹿児島県のサツマイモ生産者に被害発生の有無と防除対策の実施状況についてアンケート調査を行った。アンケートは各生産者の圃場(のべ311圃場/2年間)で行った。また、図1に整理した防除対策に関する項目に加えて、気象、地形の情報を追加した。これらのデータを用いて被害の有無を応答変、調査した防除対策等を予測変数とした一般化線形モデルを構築した。赤池の情報量基準(AIC)を選択基準としたステップワイズ法を用いて発病の有無と関係の深い要因の選択を行った(表1)。

その結果、圃場の排水性、過去の発生履歴、表面排水の不良、積算降水量が被害の発生に大きく影響していることが明らかになった。過去の発生は作付けされた圃場における基腐病菌の有無と関連が深い。その他の要因は圃場の水環境に関連が深い項目であり、排水対策が発病の有無に重要であることが分かった。

表1 選択された要因

~ .	ZIKC PROXI
要因	パラメータ推定値
切片	-2.114
過去の発生	-1.115
表面排水	-1.89
育苗床の消毒	-0.404
苗消毒	-0.378
すき込み方法	-0.202
積算降水量	0.001

※赤字は5%水準で有意差が認められた要因

3. 基腐病の被害甚大な地区を対象とした 調査により明らかになった排水対策の 重要性

広域調査により排水対策が重要であることが明らかになったが、防除対策、被害の有無に関しては全てアンケート調査であり、圃場を目視確認した現地調査ではない。そこで、基腐病の被害甚大な地区の圃場を対象にした現地調査と農家による聞き取り調査を合わせて行い被害程度と防除対策の関係を明らかにした4。

同一の地区内においても圃場によって被害程度が異なっていることが分かる(図3)。被害度(低、高の二分類)と防除対策の関係をクロス集計し、カイ二乗検定を行った。その結果、「収穫後の病イモを除去する残渣リスクの低減」、「抵抗性品種の導入」、「排水対策」が被害低減のために重要な対策であることが分かった(表2)。特に「排水対策」のP値は最も低くなった。

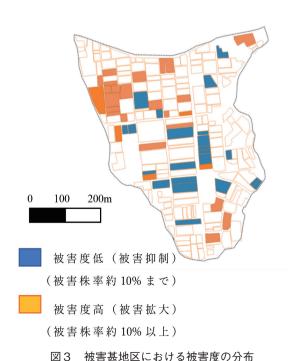


表2 有意差が認められた要因

防除対策	検定値	
	カイ二乗値	P値
土壌残渣リスク	9.651	0.024 **
排水対策	28.98	2.094e-6***
抵抗性品種の導入	2.79	0.061*

*** 1% 水準

** 5% 水準

* 10% 水準

なお、これらの三つの対策を適切に実施し た圃場は全て被害度低であった。

4. 排水対策の分類

広域調査および被害甚大な地区を対象とした調査からも排水対策が重要であることが明らかになった。排水対策は地表排水対策と地下排水対策に分けられる。地表排水対策は、明渠の設置、高畝、排水路の管理、水尻の確保、勾配修正等のことで、地下排水対策は、耕盤破砕(サブソイラ等の実施)、暗渠機能の回復(補助暗渠の定期的施工等施)のことである。

また、畑作物が栽培される圃場は「普通畑」と「転換畑」に分けられる。南九州は基本的に普通畑が多い。普通畑は台地状の地形に立地し地下水が低く、下層に透水性の高いシラス等の土壌があるため、本来は排水性の良い圃場とされている。しかし、排水路の埋設、耕盤の形成等により、排水不良で降雨時に湛水が発生している圃場も散見される。

一方、転換畑は低平地に立地することが多く、それらの圃場は地下水位が高いため、本来は排水不良となりやすい。しかし、それらの圃場では排水改良事業により排水路が整備され、排水路の末端には排水ポンプが設置される。排水ポンプにより排水路内の貯留水は地区外に排出され、排水路の水

位は低下している。そのため、圃場に施工された暗渠により圃場水は排水路へ流出される。転換畑は排水不良となりやすいと認識されていることも多いが、暗渠が機能している圃場の排水性は良い。

本文の以下に示す排水対策は基本的に普通畑を想定したものであるが、排水路の水位を下げた転換畑においては、ほぼ同様の考え方で排水対策を検討できる。

5. 地表排水対策の留意点

表面排水対策を行うためには、①圃場から排水口までの導水、②圃場から排水路への接続(排水口の管理)、③排水路の管理(排水先の確保)の三点を全てバランス良く実施する必要がある。一つでも実施されないと水はそこで遮断され、圃場外へ排水されない。

標高 (m) 0.70 0.50 0.30 0.15 0.00

図4 圃場の凹部と降雨後の湛水

圃場から排水路までの導水は圃場内の凹凸、勾配、畝の配置に留意する必要がある。管理機で作業を行うと管理機が反転する圃場端部に作土が溜まりやすい。そのため、中央が凹んだ圃場となり、凹んだ部分は湛水しやすい(図4)。それを防ぐために圃場端部ではロータリーを逆転させ端部の土を運搬する等の配慮が必要である。また、圃場の下流部に枕畝を設置すると排水が流下を妨げる場合もある。その場合は枕畝を切る、枕畝を設置しない等の対策が求められる。

圃場と排水路等の圃場外の接続が不十分な圃場もある(図5)。圃場の導水に十分に配慮された圃場でも接続が不十分な圃場が散見される。この場合、排水口から地表排水されず、湛水しやすくなる。

排水路の管理が不十分で地表排水の流出 先がない圃場も地表排水は不良となる(図 6)。転換畑(水田)の場合は、既存の水 路管理ルールを踏襲しながら、水路の土砂

図5 圃場と排水先の接続 A:接続が良好 B:排水口が土砂で埋設し不良

図6 排水路の管理状況の違い

A:管理が良好

B:管理不十分で排水路が機能していない

上げ等の管理のルールが決められている場 合が多い。しかし、普通畑の場合、水源を 作ることで新規に造成された圃場も多い。 その場合、水路管理のルールが明確に定め られていないこともある。水路管理のルー ルがないと水路管理が不十分となり、水路 が土砂で堆積し排水路の機能を果たさな い。排水対策が重要となっている現在、水 路管理のルールがない地区においては、そ のルールを策定することが必要となってい る。

6. 地下排水対策の留意点

南九州のように降雨強度の高い地域にお いては、基本的に「地表排水対策」が重要 となる。しかし、普通畑は基本的に台地の ような地下水位が低い地形であることが多 いことに加え、圃場の下層土はボラ土、シ ラスのような透水性の高い土壌のため、耕 盤破砕による地下排水促進も効果的であ る。

現地調査を行うとトラクター等の管理機 の踏み固めにより土壌深度15~30cmに土 壌硬度1.5Mpa以上の耕盤が形成されてい る圃場も多い(図7)。しかし、サブソイ ラ等を用いて耕盤破砕を適切に実施すれば 耕盤は破砕され(図8)、浸透性の高い下 層土へ圃場水が排水される。

7. 排水対策効果の比較結果

「排水対策なし」「地下排水対策のみ」「地 表排水対策のみ | 「地表 + 地下排水対策 | の4つの処理を行った試験区を作成し、降 雨後の湛水状況を比較した(図9)。地表 排水対策を実施すると圃場の湛水が減少し ていることが分かる。特に地表+地下排水

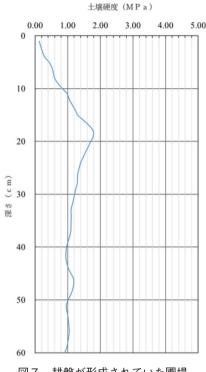
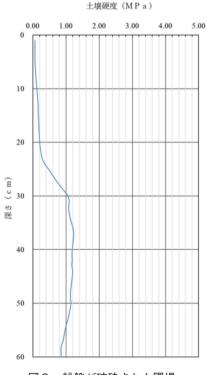
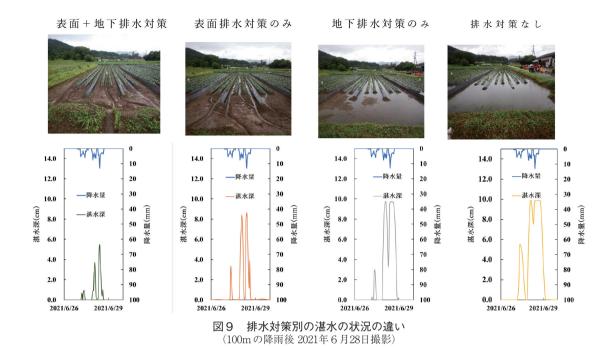




図7 耕盤が形成されていた圃場

耕盤が破砕された圃場 図8

対策を実施した圃場では湛水が抑制されて いることが分かる。

おわりに

基腐病の防除対策のためには総合的防除が必要である。その中でも排水対策が重要な防除対策の一つであることが生産者に広く認識されるようになっている。排水対策を含めた防除対策の進展により、基腐病の被害は低減した。排水対策は基腐病の被害低減のみならず、湿害回避等、畑作物の安定生産のために重要な技術である。温暖化にともない、強度の高い降雨が発生する頻度が高くなり、湿害・湛水リスクも増加している。適切に排水対策を実施することの重要性が増しているといえる。

引用文献 (参考文献)

- 1) 鹿児島県 (2025) 鹿児島県サツマイモ基腐病防除対策マニュアル, https://www.pref.kagoshima.jp/ag06/documents/documents/74570_20240315133011-1.pdf, 2025年7月15日参照.
- 2) 宮崎県 (2024) サツマイモ基腐病 対策マニュアル. 2025 年7月15日参照.
- 3)農研機構, 鹿児島県農業開発総合センター, 鹿児島県経済農業協同組合連合会, 宮崎県総 合農業試験場,沖縄県農業研究センター(2022) サツマイモ基腐病の発生生態と防除対策, 令 和4年版, pp86.
- 4) 島武男, 落合将輝, 小林有紀, 石井孝典, 小林透, 鎌田えりか, 斎藤晶, 関口博之, 吉田重信(2024), サツマイモ基腐病の被害甚大な地区におけるネットワーク解析を用いた効果的な防除技術の提示, 農業情報研究, 33(2): 81-96.